On the Context-Free Ambiguity of Emoji

Published in ICWSM, 2022

Emojis come with prepacked semantics making them great candidates to create new forms of more accessible communications. Yet, little is known about how much of this emojis semantic is agreed upon by humans, outside of textual contexts. Thus, we collected a crowdsourced dataset of one-word emoji descriptions for 1,289 emojis presented to participants with no surrounding text. The emojis and their interpretations were then examined for ambiguity. We find that with 30 annotations per emoji, 16 emojis (1.2%) are completely unambiguous, whereas 55 emojis (4.3%) are so ambiguous that their descriptions are indistinguishable from randomly chosen descriptions. Most of studied emojis are spread out between the two extremes. Furthermore, investigating the ambiguity of different types of emojis, we find that an important factor is the extent to which an emoji has an embedded symbolical meaning drawn from an established code-book of symbols. We conclude by discussing design implications.

Download here

RecipeNLG: A Cooking Recipes Dataset for Semi-Structured Text Generation

Published in INLG, 2020

Semi-structured text generation is a non-trivial problem. Although last years have brought lots of improvements in natural language generation, thanks to the development of neural models trained on large scale datasets, these approaches still struggle with producing structured, context- and commonsense-aware texts. Moreover, it is not clear how to evaluate the quality of generated texts. To address these problems, we introduce RecipeNLG – a novel dataset of cooking recipes. We discuss the data collection process and the relation between the semi-structured texts and cooking recipes. We use the dataset to approach the problem of generating recipes. Finally, we make use of multiple metrics to evaluate the generated recipes.

Download here